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In this research the technology of complex Markov chains, i.e. Markov chains with a memory is applied to forecast financial 
time-series. The main distinction of complex or high-order Markov chains [1] and simple first-order ones is the existing of after 
effect or memory. The high-order Markov chains can be simplified to first-order ones by generalizing the states in Markov chains. 
Considering the “generalized state” as the sequence of states makes a possibility to model high-order Markov chains like first-order 
ones. The adaptive method of defining the states is proposed, it is concerned with the statistic properties of price returns [2]. 
According to the fundamental principles of quantum measurement theories, the measurement procedure impacts not only on  
the result of the measurement, but also on the state of the measured system, and the behaviour of this system in the future remains 
undefined, despite of the precision of the measurement. This statement, in our opinion, is general and is true not only for physical 
systems, but to any complex systems [3]. 
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1. Introduction  

 
Nonlinear systems, in which future states depends on infinite past states are being analysed.  

The analysis of above-mentioned systems is possible only in discrete and finite representation, and 
results of it will be initially and principally approximate, i.e. it contains endogenous uncertainty, which 
inherits from current system according to the quantum postulates. 

With the chosen time discretization, the memory-based model can be described in the following 
way: 
 
( ) ( ) ( ) ( )( )1 ; 1 ; 2 ...x n f x n x n x n+ = − − . (1) 

 
It’s necessary to mention, that with the continuing time definition the dynamical behaviour of  

the memory-based model is unable to be represented with some trajectory on the finite-dimensional 
phase space. 

In order to quantify uncertainties in real complex socio-economical systems the probabilistic 
models are used. However, the usage of probabilistic models is based on the controversial hypotheses, so 
statistical interpretation of the results is not informative enough, and its results are not corresponding to 
the real systemic processes. In particular, the 1 / f-noise problem [4] is widely connected with the existence 
of long memory in complex systems. From the statistic’s point of view it means the absence of the mean 
value in time series as a limit, when the time window approaches infinity, for any processes in complex 
systems. So such processes cannot be statistically explained [2]. 
 
2. Modern Conceptions in Complex System’s Modelling 

 
The new approaches in complex system’s dynamics simulation and prediction are based on the usage 

of determined chaos and neural-networks technologies [5–7]. The exploration and realization became 
possible only with appearance of powerful modern computers. The common feature of these technologies 
is a usage of recurrent computational process: 
 

( )( )( )( )1 1 1 1... ... , 1, 2,...n n nx f f f x n+ −= = , (2) 
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where ( )i if x  is nonlinear mapping for vector ix , i  is a discrete or real or modelled time. To identify  

the model (2) means to define parameters of nonlinear function ( )i if x , the distinctions between 
determined chaos and neural networks models connected with the type of the function and parameter 
estimation methods. Convergence of the process (2) in general is not required. In general case a function 
can take either single-moment vector component’s values 

ix , or dynamics it’s changes in time. 
It is possible to convert a particular model (1) to the type of more general model (2) with the help 

of lag variables addition into the model (1). 
Both deterministic (described by integro-differential equations) and stochastic processes (complex 

Markov chains [1] belongs to it), can be reviewed as particular cases of the determined chaos models of 
type (2). With time discretization tΔ  approaches zero, if such a limit exists, the model converges to 
classical integro-differential equations. With finite tΔ  it is models with discrete time, which can generate 
future value’s sets in corresponding phase space, also including lag variables. These sets can be either 
measurable (discrete or continuous) sets, that accept probabilistic interpretation, or immeasurable sets – 
fractals [8], for which such an interpretation is in principle unacceptable. 

The prominent examples for determined chaos models, acceptable for probabilistic interpretation, 
are different pseudo random-number generators, which are widely used in simulation modelling.  
It’s necessary to mention, that no exact procedures exist, which can differentiate “real” random sequence 
from pseudo-random one. Indeed, any finite “random” sequence definitionally is not random because of 
its finiteness, and any “non-random” finite sequence may be regarded as one of the possible, but very rare, 
subsets from real infinite random sequence. 

Discrete Markov process Х(t) of order r ≥ 1 with discrete time t, (the Complex Markov chain of 
order r ≥ 1), is defined as conditional probability [1]: 

 
p(xs,ts/xs-r; ..,xs-1,ts-1) = p(xs,ts/x1,t1;.., xs-1, ts-1). (3) 
 

This condition should be fulfilled for any discrete moments of time t1 < t2 <… < tr < ts. (the tuple 
(xi,ti) is considered as a state (X(ti) = xi). Both simple Markov chain (r = 1), and Complex Markov chain 
(r > 1) is defined by the distribution of transition probabilities p(xs,ts/xs-r; ..,xs-1,ts-1) (the conditional 
probability). This distribution depends on r last states and the distribution of r-th state (unconditional 
probability): 
 
p(xs-r ...,xs-1,ts-1) = P{(X(ts-r) = xs-r), …(X(ts-1) = xs-1)}, (4) 
 
where time moments t1, t2,…ts are regarded as discrete integer parameters. 

The main distinction of complex high-order Markov chains from simply first order ones is the existence 
of the after-effect (memory), because the future state of the system (xp, tp) depends not only on the current 
state (xq, tq) (simple Markov chain), but also on sequence of r – 1 past states (xq-r+1, tq-r+1;…xq-1, tq-1),  
tq-r+1 <... < tq-1 < tq < tp in the complex Markov chain. We can simplify the complex Markov chains of 
order r to simple ones (of order r = 1) by generalizing the state of the system. We consider the “general 
state” as the sequence of  r past states [2].  

The technology, which is proposed in the current work, is similar to neural-networks and is based 
on the following terms: 
 

1. The process has an after-effect and is generated by some “hidden” model of determined chaos. 
Classical random and determined processes are regarded as partial cases of more general model. 

2. Input data for a model of prediction is only the discrete points of researched value of the system.  
The time interval of the discretization is constant. This data definitionally is finite and therefore is 
restricted.  

3. We use the quantized discrete relative differential of the input time series. This differentials are 
counted with certain time steps, that is congruous to the input time-series discretization time interval 
(The input discretization time interval is considers a unity time interval). 

4. The conditional probabilities of the one-step transitions are counted, considering the Markov chain is 
stationary at the given time-series. 

5. We take the difference with the maximum likelihood at the each step as a prediction, and at the next 
step we consider this probability equals to unity (process is considered as determined one). 
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6. The optimal choice of hierarchy of time discretization and the parameters for each discretization time 
interval (Markov chains order, or memory length, the number and the characteristics of states in  
the Markov chain) is evaluated with the genetic and learning approach, similarly to neural-networks 
technologies. 

The terms 1–6 should be regarded as conditions, we can prove it only in the set of the experimental 
researches. Really this postulates a new procedure of indirect measurement, which is based on the current 
discretized input time-series, the result of this measurement is the prediction as the one of the possible 
scenarios of the system behaviour in the future (the sequence or the vector of predicted time series).  

Conceptually this approach may be proved by some analogy with the properties and dynamic and 
behaviour of the quantum-mechanical systems. 
 
3. The Prediction Algorithm 

 
The prediction algorithm consists of the following steps. 

 

1. Evaluation the set of time discretization intervals (tmin ≤ t ≤ tmax), relating to the hierarchy of time 
steps Δt = 1, 2, 4, 8, 16, 32…Δtmax, Δtmax= 2k, or more complex hierarchies. 

2. Chose the number of quantized levels s for the differences (i.e. the number of elementary states for 
Markov chains) and coding (discretizing) the differences for every Δt, optimising the distribution 
between the states to be uniform. 

3. For every discretization time interval Δt and number of quantized states s we estimate the transition 
probabilities between the states for Markov chains of order r = 1, 2, 3, 4,… and evaluation of 
transition probability matrices. 

4. Doing a prediction for triple (∆t, r, s) and for the last state tbeg, tbeg ≤ tmax-∆t using the state with 
maximum probability at each step. 

5. Recurrent conjunction of prediction series of different discretization time intervals ∆t in a single 
time-series. 

6. Estimate the optimal parameter values s and r for every ∆t.  
7. Doing a final prediction using above-mentioned procedures and optimal parameters s and r, 

estimated at step 6. 
8. Conjunction of resulting time-series with a zero order Markov chain series. We consider linear trend 

with sine as the zero-order series (the function ( )
1

sin( )
n

i i i
i

y ax b c d x e
=

= + + +∑ ). The coefficients of this 

function are estimated by nonlinear least squares method. 
 
4. Experimental Results and Algorithm Testing 

 
Based on above-mentioned algorithm, the computer program is created in Matlab environment. 

Parameters of Complex Markov chains were automatically estimated through experiments on learning 
data set. The discretization time step hierarchies {Δti} of two types are used. The simple one is similar to 
discrete Fourier transform and is a set of Δti = 2i and the complex one is a natural number’s powers 

productions ⋅=Δ ∏
=

n

i

s
ii

ipt
1

and has more wide net of time steps. The time discretizations hierarchy 

gives a possibility to review long-memory properties of the series without increasing the order of  
the Markov chains, to make prediction on the different frequencies of the series. 

The algorithm was tested on the following time series: 
 

1) on regular dependences of type: 

( )sin exp( ) ; 1,2,...nx a bn dn c n= ⋅ − + =  , (5) 

(discrete sin oscillations with different frequencies, time discretizations, with exponential fade out and 
without it) (see Figures 1 and 2); 
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Figure 1. Prediction of a function y = sin ⎟
⎠
⎞

⎜
⎝
⎛ t

20
2π  with parameters  

k = 5, s = 9 
 

Figure 2. Prediction of a function  y = sin ⎟
⎠
⎞

⎜
⎝
⎛ t

60
2π   

with parameters k = 2, s = 9 
 

2) on time series, generated by discrete model “Predator-Prey”: 

( )( )
( )

1

1

1 1 ;

1
n n n n

n n n

x x x y

y y x

α

γ β
+

+

⎧ = + − −⎪
⎨

= − +⎪⎩

 (6) 

with parameter values 3,55; 2,1623; 0,8α β γ= = = , which causes likely chaotic regime  
(see Figures 3 and 4); 
 

  
Figure 3. Prediction of the series from “Predator-Pray” model, 

 s = 5 
 

Figure 4. Prediction of the series from “Predator-Pray” model, 

s = tΔ  

 

3) on real financial time series including EUR/USD Forex course, the World's stock’s indices, 
including Dow Jones, S & P 500, DAX, FTSE, RTS, PFTS and others (see Figures 5 and 6). 

 

  

Figure 5. Prediction of Dow Jones index (1940–1953) Figure 6. Prediction of index S & P 500. May 2009 
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Conclusions 
 

The results of experiments and its analysis give possibilities to make the following conclusions. 
1. Replacing the initial time series with its first value and a quantized differences sequence (straight 

procedure) causes losses in precision because of quantification errors and its cumulating while 
difference summarizing in inverse transformation procedure. However surplus data representation 
with time discretization hierarchy and inverse transform procedure can essentially reduce 
quantification errors. For sine (and all periodical) oscillations the reasons of errors are discretization 
time step’s incoherence with oscillation periods tΔ , which causes “pulsation” effects. 

2. The prediction quality increases with Markov chain’s order r, however while learning set’s length is 
limited, the quality growth is also limited. It is probably caused: 

- by reducing the number of chains, for every transition probability and increasing a correlation 
between them (what is equivalent of it’s number reducing because of averaging procedure); 

- by chain identification of error number increasing, because of definitely approximate character 
of state quantification and chain’s identification. 

3. It’s possible to generate two or more possible scenarios, while probability distribution has two 
similar mode values. The corresponding fork points at the predicted curve can be regarded as 
possible process bifurcation points. 

4. For “Predator-Prey” models a prediction with Markov chain’s order 2r=  causes better quality, than  
a prediction with 3r = , what can be explained by model’s simplicity and absence of “long” memory 
(value of 1nx +

 is determined by the values 
nx  and 

1nx −
). In this case increasing of r does not cause 

prediction quality to increase, but it can cause the influence of negative factors, described in 2). 
 

The new prediction technology, similar to neural-network ones is proposed for complex financial 
system’s simulation. The algorithm and its program realization was developed and tested on artificial and 
real time series. The prediction results for stock indices S & P 500, DAX, FTSE are reviewed. The results 
demonstrate the algorithm’s ability to predict financial time series and prospect of further researches in 
the proposed field. 
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